Copied to
clipboard

G = C42.143D10order 320 = 26·5

143rd non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.143D10, C10.1272+ 1+4, (C4×D20)⋊46C2, (D4×Dic5)⋊31C2, (Q8×Dic5)⋊20C2, C4.4D414D5, (C4×Dic10)⋊46C2, (C2×D4).176D10, C20⋊D4.11C2, (C2×Q8).139D10, C22⋊C4.36D10, Dic54D434C2, C20.126(C4○D4), C20.23D423C2, C4.16(D42D5), (C2×C20).505C23, (C4×C20).188C22, (C2×C10).225C24, D10.12D446C2, C2.51(D48D10), C23.47(C22×D5), Dic5.65(C4○D4), Dic5.5D441C2, (C2×D20).274C22, (D4×C10).158C22, C22.D2026C2, C4⋊Dic5.235C22, (C22×C10).55C23, (Q8×C10).129C22, (C22×D5).97C23, C22.246(C23×D5), C23.D5.58C22, D10⋊C4.37C22, C54(C22.53C24), (C4×Dic5).143C22, (C2×Dic5).266C23, (C2×Dic10).258C22, C10.D4.142C22, (C22×Dic5).145C22, C2.81(D5×C4○D4), C10.192(C2×C4○D4), C2.57(C2×D42D5), (C5×C4.4D4)⋊17C2, (C2×C4×D5).267C22, (C2×C4).198(C22×D5), (C2×C5⋊D4).63C22, (C5×C22⋊C4).67C22, SmallGroup(320,1353)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.143D10
C1C5C10C2×C10C22×D5C2×C4×D5D10.12D4 — C42.143D10
C5C2×C10 — C42.143D10
C1C22C4.4D4

Generators and relations for C42.143D10
 G = < a,b,c,d | a4=b4=c10=1, d2=a2, ab=ba, cac-1=dad-1=ab2, cbc-1=a2b, dbd-1=b-1, dcd-1=a2c-1 >

Subgroups: 854 in 236 conjugacy classes, 97 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, Dic5, Dic5, C20, C20, D10, C2×C10, C2×C10, C4×D4, C4×Q8, C22.D4, C4.4D4, C4.4D4, C41D4, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C22×C10, C22.53C24, C4×Dic5, C4×Dic5, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C22×Dic5, C2×C5⋊D4, D4×C10, Q8×C10, C4×Dic10, C4×D20, Dic54D4, D10.12D4, Dic5.5D4, C22.D20, D4×Dic5, C20⋊D4, Q8×Dic5, C20.23D4, C5×C4.4D4, C42.143D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, C22×D5, C22.53C24, D42D5, C23×D5, C2×D42D5, D5×C4○D4, D48D10, C42.143D10

Smallest permutation representation of C42.143D10
On 160 points
Generators in S160
(1 110 63 112)(2 144 64 88)(3 102 65 114)(4 146 66 90)(5 104 67 116)(6 148 68 82)(7 106 69 118)(8 150 70 84)(9 108 61 120)(10 142 62 86)(11 45 99 129)(12 153 100 135)(13 47 91 121)(14 155 92 137)(15 49 93 123)(16 157 94 139)(17 41 95 125)(18 159 96 131)(19 43 97 127)(20 151 98 133)(21 152 72 134)(22 46 73 130)(23 154 74 136)(24 48 75 122)(25 156 76 138)(26 50 77 124)(27 158 78 140)(28 42 79 126)(29 160 80 132)(30 44 71 128)(31 113 56 101)(32 89 57 145)(33 115 58 103)(34 81 59 147)(35 117 60 105)(36 83 51 149)(37 119 52 107)(38 85 53 141)(39 111 54 109)(40 87 55 143)
(1 12 55 22)(2 91 56 74)(3 14 57 24)(4 93 58 76)(5 16 59 26)(6 95 60 78)(7 18 51 28)(8 97 52 80)(9 20 53 30)(10 99 54 72)(11 39 21 62)(13 31 23 64)(15 33 25 66)(17 35 27 68)(19 37 29 70)(32 75 65 92)(34 77 67 94)(36 79 69 96)(38 71 61 98)(40 73 63 100)(41 117 158 82)(42 106 159 149)(43 119 160 84)(44 108 151 141)(45 111 152 86)(46 110 153 143)(47 113 154 88)(48 102 155 145)(49 115 156 90)(50 104 157 147)(81 124 116 139)(83 126 118 131)(85 128 120 133)(87 130 112 135)(89 122 114 137)(101 136 144 121)(103 138 146 123)(105 140 148 125)(107 132 150 127)(109 134 142 129)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 63 62)(2 61 64 9)(3 8 65 70)(4 69 66 7)(5 6 67 68)(11 22 99 73)(12 72 100 21)(13 30 91 71)(14 80 92 29)(15 28 93 79)(16 78 94 27)(17 26 95 77)(18 76 96 25)(19 24 97 75)(20 74 98 23)(31 53 56 38)(32 37 57 52)(33 51 58 36)(34 35 59 60)(39 55 54 40)(41 157 125 139)(42 138 126 156)(43 155 127 137)(44 136 128 154)(45 153 129 135)(46 134 130 152)(47 151 121 133)(48 132 122 160)(49 159 123 131)(50 140 124 158)(81 82 147 148)(83 90 149 146)(84 145 150 89)(85 88 141 144)(86 143 142 87)(101 120 113 108)(102 107 114 119)(103 118 115 106)(104 105 116 117)(109 112 111 110)

G:=sub<Sym(160)| (1,110,63,112)(2,144,64,88)(3,102,65,114)(4,146,66,90)(5,104,67,116)(6,148,68,82)(7,106,69,118)(8,150,70,84)(9,108,61,120)(10,142,62,86)(11,45,99,129)(12,153,100,135)(13,47,91,121)(14,155,92,137)(15,49,93,123)(16,157,94,139)(17,41,95,125)(18,159,96,131)(19,43,97,127)(20,151,98,133)(21,152,72,134)(22,46,73,130)(23,154,74,136)(24,48,75,122)(25,156,76,138)(26,50,77,124)(27,158,78,140)(28,42,79,126)(29,160,80,132)(30,44,71,128)(31,113,56,101)(32,89,57,145)(33,115,58,103)(34,81,59,147)(35,117,60,105)(36,83,51,149)(37,119,52,107)(38,85,53,141)(39,111,54,109)(40,87,55,143), (1,12,55,22)(2,91,56,74)(3,14,57,24)(4,93,58,76)(5,16,59,26)(6,95,60,78)(7,18,51,28)(8,97,52,80)(9,20,53,30)(10,99,54,72)(11,39,21,62)(13,31,23,64)(15,33,25,66)(17,35,27,68)(19,37,29,70)(32,75,65,92)(34,77,67,94)(36,79,69,96)(38,71,61,98)(40,73,63,100)(41,117,158,82)(42,106,159,149)(43,119,160,84)(44,108,151,141)(45,111,152,86)(46,110,153,143)(47,113,154,88)(48,102,155,145)(49,115,156,90)(50,104,157,147)(81,124,116,139)(83,126,118,131)(85,128,120,133)(87,130,112,135)(89,122,114,137)(101,136,144,121)(103,138,146,123)(105,140,148,125)(107,132,150,127)(109,134,142,129), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,63,62)(2,61,64,9)(3,8,65,70)(4,69,66,7)(5,6,67,68)(11,22,99,73)(12,72,100,21)(13,30,91,71)(14,80,92,29)(15,28,93,79)(16,78,94,27)(17,26,95,77)(18,76,96,25)(19,24,97,75)(20,74,98,23)(31,53,56,38)(32,37,57,52)(33,51,58,36)(34,35,59,60)(39,55,54,40)(41,157,125,139)(42,138,126,156)(43,155,127,137)(44,136,128,154)(45,153,129,135)(46,134,130,152)(47,151,121,133)(48,132,122,160)(49,159,123,131)(50,140,124,158)(81,82,147,148)(83,90,149,146)(84,145,150,89)(85,88,141,144)(86,143,142,87)(101,120,113,108)(102,107,114,119)(103,118,115,106)(104,105,116,117)(109,112,111,110)>;

G:=Group( (1,110,63,112)(2,144,64,88)(3,102,65,114)(4,146,66,90)(5,104,67,116)(6,148,68,82)(7,106,69,118)(8,150,70,84)(9,108,61,120)(10,142,62,86)(11,45,99,129)(12,153,100,135)(13,47,91,121)(14,155,92,137)(15,49,93,123)(16,157,94,139)(17,41,95,125)(18,159,96,131)(19,43,97,127)(20,151,98,133)(21,152,72,134)(22,46,73,130)(23,154,74,136)(24,48,75,122)(25,156,76,138)(26,50,77,124)(27,158,78,140)(28,42,79,126)(29,160,80,132)(30,44,71,128)(31,113,56,101)(32,89,57,145)(33,115,58,103)(34,81,59,147)(35,117,60,105)(36,83,51,149)(37,119,52,107)(38,85,53,141)(39,111,54,109)(40,87,55,143), (1,12,55,22)(2,91,56,74)(3,14,57,24)(4,93,58,76)(5,16,59,26)(6,95,60,78)(7,18,51,28)(8,97,52,80)(9,20,53,30)(10,99,54,72)(11,39,21,62)(13,31,23,64)(15,33,25,66)(17,35,27,68)(19,37,29,70)(32,75,65,92)(34,77,67,94)(36,79,69,96)(38,71,61,98)(40,73,63,100)(41,117,158,82)(42,106,159,149)(43,119,160,84)(44,108,151,141)(45,111,152,86)(46,110,153,143)(47,113,154,88)(48,102,155,145)(49,115,156,90)(50,104,157,147)(81,124,116,139)(83,126,118,131)(85,128,120,133)(87,130,112,135)(89,122,114,137)(101,136,144,121)(103,138,146,123)(105,140,148,125)(107,132,150,127)(109,134,142,129), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,63,62)(2,61,64,9)(3,8,65,70)(4,69,66,7)(5,6,67,68)(11,22,99,73)(12,72,100,21)(13,30,91,71)(14,80,92,29)(15,28,93,79)(16,78,94,27)(17,26,95,77)(18,76,96,25)(19,24,97,75)(20,74,98,23)(31,53,56,38)(32,37,57,52)(33,51,58,36)(34,35,59,60)(39,55,54,40)(41,157,125,139)(42,138,126,156)(43,155,127,137)(44,136,128,154)(45,153,129,135)(46,134,130,152)(47,151,121,133)(48,132,122,160)(49,159,123,131)(50,140,124,158)(81,82,147,148)(83,90,149,146)(84,145,150,89)(85,88,141,144)(86,143,142,87)(101,120,113,108)(102,107,114,119)(103,118,115,106)(104,105,116,117)(109,112,111,110) );

G=PermutationGroup([[(1,110,63,112),(2,144,64,88),(3,102,65,114),(4,146,66,90),(5,104,67,116),(6,148,68,82),(7,106,69,118),(8,150,70,84),(9,108,61,120),(10,142,62,86),(11,45,99,129),(12,153,100,135),(13,47,91,121),(14,155,92,137),(15,49,93,123),(16,157,94,139),(17,41,95,125),(18,159,96,131),(19,43,97,127),(20,151,98,133),(21,152,72,134),(22,46,73,130),(23,154,74,136),(24,48,75,122),(25,156,76,138),(26,50,77,124),(27,158,78,140),(28,42,79,126),(29,160,80,132),(30,44,71,128),(31,113,56,101),(32,89,57,145),(33,115,58,103),(34,81,59,147),(35,117,60,105),(36,83,51,149),(37,119,52,107),(38,85,53,141),(39,111,54,109),(40,87,55,143)], [(1,12,55,22),(2,91,56,74),(3,14,57,24),(4,93,58,76),(5,16,59,26),(6,95,60,78),(7,18,51,28),(8,97,52,80),(9,20,53,30),(10,99,54,72),(11,39,21,62),(13,31,23,64),(15,33,25,66),(17,35,27,68),(19,37,29,70),(32,75,65,92),(34,77,67,94),(36,79,69,96),(38,71,61,98),(40,73,63,100),(41,117,158,82),(42,106,159,149),(43,119,160,84),(44,108,151,141),(45,111,152,86),(46,110,153,143),(47,113,154,88),(48,102,155,145),(49,115,156,90),(50,104,157,147),(81,124,116,139),(83,126,118,131),(85,128,120,133),(87,130,112,135),(89,122,114,137),(101,136,144,121),(103,138,146,123),(105,140,148,125),(107,132,150,127),(109,134,142,129)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,63,62),(2,61,64,9),(3,8,65,70),(4,69,66,7),(5,6,67,68),(11,22,99,73),(12,72,100,21),(13,30,91,71),(14,80,92,29),(15,28,93,79),(16,78,94,27),(17,26,95,77),(18,76,96,25),(19,24,97,75),(20,74,98,23),(31,53,56,38),(32,37,57,52),(33,51,58,36),(34,35,59,60),(39,55,54,40),(41,157,125,139),(42,138,126,156),(43,155,127,137),(44,136,128,154),(45,153,129,135),(46,134,130,152),(47,151,121,133),(48,132,122,160),(49,159,123,131),(50,140,124,158),(81,82,147,148),(83,90,149,146),(84,145,150,89),(85,88,141,144),(86,143,142,87),(101,120,113,108),(102,107,114,119),(103,118,115,106),(104,105,116,117),(109,112,111,110)]])

53 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H···4O4P4Q5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order1222222244444444···4445510···101010101020···2020202020
size1111442020222244410···102020222···288884···48888

53 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D10D10D102+ 1+4D42D5D5×C4○D4D48D10
kernelC42.143D10C4×Dic10C4×D20Dic54D4D10.12D4Dic5.5D4C22.D20D4×Dic5C20⋊D4Q8×Dic5C20.23D4C5×C4.4D4C4.4D4Dic5C20C42C22⋊C4C2×D4C2×Q8C10C4C2C2
# reps11122221111124428221444

Matrix representation of C42.143D10 in GL6(𝔽41)

900000
090000
0040000
0004000
000090
00001632
,
32160000
3690000
001000
000100
000090
00001632
,
40200000
010000
006600
0035100
000028
00001539
,
40200000
410000
006600
0013500
00003933
0000162

G:=sub<GL(6,GF(41))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,16,0,0,0,0,0,32],[32,36,0,0,0,0,16,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,16,0,0,0,0,0,32],[40,0,0,0,0,0,20,1,0,0,0,0,0,0,6,35,0,0,0,0,6,1,0,0,0,0,0,0,2,15,0,0,0,0,8,39],[40,4,0,0,0,0,20,1,0,0,0,0,0,0,6,1,0,0,0,0,6,35,0,0,0,0,0,0,39,16,0,0,0,0,33,2] >;

C42.143D10 in GAP, Magma, Sage, TeX

C_4^2._{143}D_{10}
% in TeX

G:=Group("C4^2.143D10");
// GroupNames label

G:=SmallGroup(320,1353);
// by ID

G=gap.SmallGroup(320,1353);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,1571,297,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a^2*b,d*b*d^-1=b^-1,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽